Udvidet returret til d. 31. januar 2025

Statistical Inference Based on Kernel Distribution Function Estimators

Bag om Statistical Inference Based on Kernel Distribution Function Estimators

This book presents a study of statistical inferences based on the kernel-type estimators of distribution functions. The inferences involve matters such as quantile estimation, nonparametric tests, and mean residual life expectation, to name just some. Convergence rates for the kernel estimators of density functions are slower than ordinary parametric estimators, which have root-n consistency. If the appropriate kernel function is used, the kernel estimators of the distribution functions recover the root-n consistency, and the inferences based on kernel distribution estimators have root-n consistency. Further, the kernel-type estimator produces smooth estimation results. The estimators based on the empirical distribution function have discrete distribution, and the normal approximation cannot be improved¿that is, the validity of the Edgeworth expansion cannot be proved. If the support of the population density function is bounded, there is a boundary problem, namely the estimator does not have consistency near the boundary. The book also contains a study of the mean squared errors of the estimators and the Edgeworth expansion for quantile estimators.

Vis mere
  • Sprog:
  • Engelsk
  • ISBN:
  • 9789819918614
  • Indbinding:
  • Paperback
  • Sideantal:
  • 104
  • Udgivet:
  • 1. juni 2023
  • Udgave:
  • 23001
  • Størrelse:
  • 155x7x235 mm.
  • Vægt:
  • 172 g.
  • BLACK NOVEMBER
Leveringstid: 8-11 hverdage
Forventet levering: 6. december 2024

Beskrivelse af Statistical Inference Based on Kernel Distribution Function Estimators

This book presents a study of statistical inferences based on the kernel-type estimators of distribution functions. The inferences involve matters such as quantile estimation, nonparametric tests, and mean residual life expectation, to name just some. Convergence rates for the kernel estimators of density functions are slower than ordinary parametric estimators, which have root-n consistency. If the appropriate kernel function is used, the kernel estimators of the distribution functions recover the root-n consistency, and the inferences based on kernel distribution estimators have root-n consistency. Further, the kernel-type estimator produces smooth estimation results. The estimators based on the empirical distribution function have discrete distribution, and the normal approximation cannot be improved¿that is, the validity of the Edgeworth expansion cannot be proved. If the support of the population density function is bounded, there is a boundary problem, namely the estimator does not have consistency near the boundary. The book also contains a study of the mean squared errors of the estimators and the Edgeworth expansion for quantile estimators.

Brugerbedømmelser af Statistical Inference Based on Kernel Distribution Function Estimators



Find lignende bøger
Bogen Statistical Inference Based on Kernel Distribution Function Estimators findes i følgende kategorier:

Gør som tusindvis af andre bogelskere

Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.