Markedets billigste bøger
Levering: 1 - 2 hverdage

Statistisches Und Maschinelles Lernen

- Gangige Verfahren Im UEberblick

Bag om Statistisches Und Maschinelles Lernen

Dieses Buch verschafft Ihnen einen Überblick über einige der bekanntesten Verfahren des maschinellen Lernens aus der Perspektive der mathematischen Statistik. Nach der Lektüre kennen Sie die jeweils gestellten Forderungen an die Daten sowie deren Vor- und Nachteile und sind daher in der Lage, für ein gegebenes Problem ein geeignetes Verfahren vorzuschlagen. Beweise werden nur dort ausführlich dargestellt oder skizziert, wo sie einen didaktischen Mehrwert bieten - ansonsten wird auf die entsprechenden Fachartikel verwiesen. Für die praktische Anwendung ist ein genaueres Studium des jeweiligen Verfahrens und der entsprechenden Fachliteratur nötig, zu der Sie auf Basis dieses Buchs aber schnell Zugang finden.Das Buch richtet sich an Studierende der Mathematik höheren Semesters, die bereits Vorkenntnisse in Wahrscheinlichkeitstheorie besitzen. Behandelt werden sowohl Methoden des Supervised Learning und Reinforcement Learning als auch des Unsupervised Learning. Der Umfang entspricht einer einsemestrigen vierstündigen Vorlesung. Die einzelnen Kapitel sind weitestgehend unabhängig voneinander lesbar, am Ende jedes Kapitels kann das erworbene Wissen anhand von Übungsaufgaben und durch Implementierung der Verfahren überprüft werden. Quelltexte in der Programmiersprache R stehen auf der Springer-Produktseite zum Buch zur Verfügung.

Vis mere
  • Sprog:
  • Tysk
  • ISBN:
  • 9783662593530
  • Indbinding:
  • Paperback
  • Sideantal:
  • 383
  • Udgivet:
  • 28. november 2019
  • Udgave:
  • 12019
  • Størrelse:
  • 244x170x21 mm.
  • Vægt:
  • 635 g.
Leveringstid: 8-11 hverdage
Forventet levering: 16. januar 2025
Forlænget returret til d. 31. januar 2025
  •  

    Kan ikke leveres inden jul.
    Køb nu og print et gavebevis

Beskrivelse af Statistisches Und Maschinelles Lernen

Dieses Buch verschafft Ihnen einen Überblick über einige der bekanntesten Verfahren des maschinellen Lernens aus der Perspektive der mathematischen Statistik. Nach der Lektüre kennen Sie die jeweils gestellten Forderungen an die Daten sowie deren Vor- und Nachteile und sind daher in der Lage, für ein gegebenes Problem ein geeignetes Verfahren vorzuschlagen. Beweise werden nur dort ausführlich dargestellt oder skizziert, wo sie einen didaktischen Mehrwert bieten - ansonsten wird auf die entsprechenden Fachartikel verwiesen. Für die praktische Anwendung ist ein genaueres Studium des jeweiligen Verfahrens und der entsprechenden Fachliteratur nötig, zu der Sie auf Basis dieses Buchs aber schnell Zugang finden.Das Buch richtet sich an Studierende der Mathematik höheren Semesters, die bereits Vorkenntnisse in Wahrscheinlichkeitstheorie besitzen. Behandelt werden sowohl Methoden des Supervised Learning und Reinforcement Learning als auch des Unsupervised Learning. Der Umfang entspricht einer einsemestrigen vierstündigen Vorlesung. Die einzelnen Kapitel sind weitestgehend unabhängig voneinander lesbar, am Ende jedes Kapitels kann das erworbene Wissen anhand von Übungsaufgaben und durch Implementierung der Verfahren überprüft werden. Quelltexte in der Programmiersprache R stehen auf der Springer-Produktseite zum Buch zur Verfügung.

Brugerbedømmelser af Statistisches Und Maschinelles Lernen



Find lignende bøger
Bogen Statistisches Und Maschinelles Lernen findes i følgende kategorier:

Gør som tusindvis af andre bogelskere

Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.