Udvidet returret til d. 31. januar 2025

Advances in Phase Space Analysis of Partial Differential Equations

Bag om Advances in Phase Space Analysis of Partial Differential Equations

This collection of original articles and surveys addresses the recent advances in linear and nonlinear aspects of the theory of partial differential equations. Key topics include: * Operators as "sums of squares" of real and complex vector fields: both analytic hypoellipticity and regularity for very low regularity coefficients; * Nonlinear evolution equations: Navier-Stokes system, Strichartz estimates for the wave equation, instability and the Zakharov equation and eikonals; * Local solvability: its connection with subellipticity, local solvability for systems of vector fields in Gevrey classes; * Hyperbolic equations: the Cauchy problem and multiple characteristics, both positive and negative results. Graduate students at various levels as well as researchers in PDEs and related fields will find this an excellent resource. List of contributors: L. Ambrosio                            N. Lerner H. Bahouri                              X. Lu S. Berhanu                              J. Metcalfe J.-M. Bony                              T. Nishitani N. Dencker                              V. Petkov S.Ervedoza                             J. Rauch I. Gallagher                             M. Reissig J. Hounie                                 L. Stoyanov E. Jannelli                                D. S. Tartakoff K. Kajitani                              D. Tataru A. Kurganov                           F. Treves                                                 G. Zampieri                                                 E. Zuazua

Vis mere
  • Sprog:
  • Engelsk
  • ISBN:
  • 9780817648602
  • Indbinding:
  • Hardback
  • Sideantal:
  • 292
  • Udgivet:
  • 29. september 2009
  • Udgave:
  • 2009
  • Størrelse:
  • 164x25x242 mm.
  • Vægt:
  • 603 g.
  • BLACK NOVEMBER
  Gratis fragt
Leveringstid: 8-11 hverdage
Forventet levering: 6. december 2024

Beskrivelse af Advances in Phase Space Analysis of Partial Differential Equations

This collection of original articles and surveys addresses the recent advances in linear and nonlinear aspects of the theory of partial differential equations.
Key topics include:
* Operators as "sums of squares" of real and complex vector fields: both analytic hypoellipticity and regularity for very low regularity coefficients;
* Nonlinear evolution equations: Navier-Stokes system, Strichartz estimates for the wave equation, instability and the Zakharov equation and eikonals;
* Local solvability: its connection with subellipticity, local solvability for systems of vector fields in Gevrey classes;
* Hyperbolic equations: the Cauchy problem and multiple characteristics, both positive and negative results.
Graduate students at various levels as well as researchers in PDEs and related fields will find this an excellent resource.
List of contributors:
L. Ambrosio                            N. Lerner
H. Bahouri                              X. Lu
S. Berhanu                              J. Metcalfe
J.-M. Bony                              T. Nishitani
N. Dencker                              V. Petkov
S.Ervedoza                             J. Rauch
I. Gallagher                             M. Reissig
J. Hounie                                 L. Stoyanov
E. Jannelli                                D. S. Tartakoff
K. Kajitani                              D. Tataru
A. Kurganov                           F. Treves
                                                G. Zampieri
                                                E. Zuazua

Brugerbedømmelser af Advances in Phase Space Analysis of Partial Differential Equations



Gør som tusindvis af andre bogelskere

Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.