Udvidet returret til d. 31. januar 2025

Guidelines for Probabilistic Performance-Based Seismic Design and Assessment of Slope Engineering

Bag om Guidelines for Probabilistic Performance-Based Seismic Design and Assessment of Slope Engineering

This book provides a new design and evaluation framework based on slope Stochastic Dynamics theory to probabilistic seismic performance for slope engineering. For the seismic dynamic stability safety of slope, it shifts from deterministic seismic dynamic analysis to quantitative analysis based on nonlinear stochastic dynamics, that is, from qualitative to the description of stochasticity of earthquake excitation that meet the needs in related design specification and establish a performance standard. In the nonlinear dynamic time history analysis of slope subjected to seismic ground motion, the term ¿randomness¿ is used to express the uncertainty in the intensity and frequency of earthquake excitation for slope engineering dynamic seismic performance. It mainly includes seismic design fortification standard, corresponding ground motion excitation, performance index threshold, and slope deterministic nonlinear seismic dynamic response. Even more than that, the seismic dynamic large deformation approaches of the whole process and comprehensive analysis for flow analysis after slope instability failure. Eventually, the probabilistic seismic dynamic performance of the slope engineering will be characterized by nonlinear dynamic reliability.

Vis mere
  • Sprog:
  • Engelsk
  • ISBN:
  • 9789811991851
  • Indbinding:
  • Paperback
  • Sideantal:
  • 134
  • Udgivet:
  • 31. marts 2024
  • Udgave:
  • 2023
  • BLACK NOVEMBER
  Gratis fragt
Leveringstid: Ukendt - mangler pt.

Beskrivelse af Guidelines for Probabilistic Performance-Based Seismic Design and Assessment of Slope Engineering

This book provides a new design and evaluation framework based on slope Stochastic Dynamics theory to probabilistic seismic performance for slope engineering. For the seismic dynamic stability safety of slope, it shifts from deterministic seismic dynamic analysis to quantitative analysis based on nonlinear stochastic dynamics, that is, from qualitative to the description of stochasticity of earthquake excitation that meet the needs in related design specification and establish a performance standard. In the nonlinear dynamic time history analysis of slope subjected to seismic ground motion, the term ¿randomness¿ is used to express the uncertainty in the intensity and frequency of earthquake excitation for slope engineering dynamic seismic performance. It mainly includes seismic design fortification standard, corresponding ground motion excitation, performance index threshold, and slope deterministic nonlinear seismic dynamic response. Even more than that, the seismic dynamic large deformation approaches of the whole process and comprehensive analysis for flow analysis after slope instability failure. Eventually, the probabilistic seismic dynamic performance of the slope engineering will be characterized by nonlinear dynamic reliability.

Brugerbedømmelser af Guidelines for Probabilistic Performance-Based Seismic Design and Assessment of Slope Engineering



Gør som tusindvis af andre bogelskere

Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.