Udvidet returret til d. 31. januar 2025

Hybrid Metaheuristics

- Powerful Tools for Optimization

Bag om Hybrid Metaheuristics

This book explains the most prominent and some promising new, general techniques that combine metaheuristics with other optimization methods. A first introductory chapter reviews the basic principles of local search, prominent metaheuristics, and tree search, dynamic programming, mixed integer linear programming, and constraint programming for combinatorial optimization purposes. The chapters that follow present five generally applicable hybridization strategies, with exemplary case studies on selected problems: incomplete solution representations and decoders; problem instance reduction; large neighborhood search; parallel non-independent construction of solutions within metaheuristics; and hybridization based on complete solution archives. The authors are among the leading researchers in the hybridization of metaheuristics with other techniques for optimization, and their work reflects the broad shift to problem-oriented rather than algorithm-oriented approaches, enabling faster and more effective implementation in real-life applications. This hybridization is not restricted to different variants of metaheuristics but includes, for example, the combination of mathematical programming, dynamic programming, or constraint programming with metaheuristics, reflecting cross-fertilization in fields such as optimization, algorithmics, mathematical modeling, operations research, statistics, and simulation. The book is a valuable introduction and reference for researchers and graduate students in these domains.

Vis mere
  • Sprog:
  • Engelsk
  • ISBN:
  • 9783319809076
  • Indbinding:
  • Paperback
  • Sideantal:
  • 157
  • Udgivet:
  • 30. maj 2018
  • Udgave:
  • 12016
  • Størrelse:
  • 155x235x0 mm.
  • Vægt:
  • 2759 g.
  • BLACK NOVEMBER
  Gratis fragt
Leveringstid: 8-11 hverdage
Forventet levering: 7. december 2024

Beskrivelse af Hybrid Metaheuristics

This book explains the most prominent and some promising new, general techniques that combine metaheuristics with other optimization methods. A first introductory chapter reviews the basic principles of local search, prominent metaheuristics, and tree search, dynamic programming, mixed integer linear programming, and constraint programming for combinatorial optimization purposes. The chapters that follow present five generally applicable hybridization strategies, with exemplary case studies on selected problems: incomplete solution representations and decoders; problem instance reduction; large neighborhood search; parallel non-independent construction of solutions within metaheuristics; and hybridization based on complete solution archives. The authors are among the leading researchers in the hybridization of metaheuristics with other techniques for optimization, and their work reflects the broad shift to problem-oriented rather than algorithm-oriented approaches, enabling faster and more effective implementation in real-life applications. This hybridization is not restricted to different variants of metaheuristics but includes, for example, the combination of mathematical programming, dynamic programming, or constraint programming with metaheuristics, reflecting cross-fertilization in fields such as optimization, algorithmics, mathematical modeling, operations research, statistics, and simulation. The book is a valuable introduction and reference for researchers and graduate students in these domains.

Brugerbedømmelser af Hybrid Metaheuristics



Find lignende bøger
Bogen Hybrid Metaheuristics findes i følgende kategorier:

Gør som tusindvis af andre bogelskere

Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.