Udvidet returret til d. 31. januar 2025

Learning with Submodular Functions

- A Convex Optimization Perspective

Bag om Learning with Submodular Functions

Presents the theory of submodular functions in a self-contained way from a convex analysis perspective, presenting tight links between certain polyhedra, combinatorial optimization and convex optimization problems. In particular, it describes how submodular function minimization is equivalent to solving a variety of convex optimization problems.

Vis mere
  • Sprog:
  • Engelsk
  • ISBN:
  • 9781601987563
  • Indbinding:
  • Paperback
  • Sideantal:
  • 258
  • Udgivet:
  • 4. december 2013
  • Størrelse:
  • 156x234x14 mm.
  • Vægt:
  • 390 g.
  • BLACK NOVEMBER
  Gratis fragt
Leveringstid: 8-11 hverdage
Forventet levering: 6. december 2024

Beskrivelse af Learning with Submodular Functions

Presents the theory of submodular functions in a self-contained way from a convex analysis perspective, presenting tight links between certain polyhedra, combinatorial optimization and convex optimization problems. In particular, it describes how submodular function minimization is equivalent to solving a variety of convex optimization problems.

Brugerbedømmelser af Learning with Submodular Functions



Find lignende bøger
Bogen Learning with Submodular Functions findes i følgende kategorier:

Gør som tusindvis af andre bogelskere

Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.